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Numerical modelling of the pressure wave propagation
in the arterial �ow

Giuseppe Pontrelli∗;† and Enrico Rossoni
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SUMMARY

A di�erential model of blood �ow through an arterial vessel is presented. It consists of a one-dimensional
model describing the non-linear �uid–wall interaction coupled with a simple lumped parameter model
which accounts for outlet boundary conditions. The model includes a local sti�ening of the vessel and
the wave propagation of disturbances due to prosthetic implantations is also studied. The non-linear
problem is solved by a �nite-di�erence method on a staggered grid and some numerical simulations are
analysed and discussed. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of the pressure and �ow waves along an artery has received much attention in
the last decades. Mathematical models predicting dynamical pro�les are of interest for the
clinicians because the shape of such variables are of diagnostic signi�cance and their anomalies
can be used to detect pathological states in vascular system. The beat of the heart and the
distensibility of the arterial wall results in the occurrence of waves which propagate through
the aorta along the major arteries to the periphery. Our aim is to provide a better insight of
the mechanism of propagation, and of the changes in the pressure waveform which occurs as
it travels along the arteries due to the non-linear wall–�uid interaction.
Wave propagation in arteries has been investigated experimentally, but in vivo studies are

di�cult, expensive and limited to easily accessible arteries. Theoretical studies and computa-
tional modelling o�er an attractive method of investigation. Some researches have been carried
out on the whole systemic circulation [1] or on parts of the arterial tree [2].
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Some authors have shown that velocity �eld and damping of waves can be described
accurately using a linearly elastic quasi-one-dimensional (1D) model, whereas the vessel
viscosity can be considered as a second-order e�ect [3]. On the other hand, experimental
studies indicate that the arterial tissue is viscoelastic and anisotropic [4], and, as shown
by numerical simulations, wall viscosity cannot be neglected in time-dependent
problems [5].
The dynamics induced by the wall deformability modi�es the �uid domain and its boundary

conditions, and conversely, the �ow �eld, through the stresses exerted on the wall, induces
the wall deformation. A feedback e�ect is generated, and the dynamics of the system is
intrinsically coupled (�uid–structure interaction). Under the hypothesis that the wave am-
plitude is small and the wavelength is long compared with the vessel radius, a quasi-1D
distributed model is used for the �uid �ow. Several models based on pointwise tube laws of
type A=A(p; x) have been developed [4]. They do not include any wall displacement along
the axial direction due to the shear stress: this can be of some importance when remodelling
process and growth of the arterial endothelium are considered. In this work, a 2D linearly
viscoelastic membrane in equilibrium with the internal and external forces is presented as a
wall model. Because of low mass, the inertia of the wall is negligible compared with the
elastic force, and has been ignored. The mathematical description of the phenomenon is given
in Section 2.
In the linearized case, the wave propagation is studied by a perturbation analysis on small

disturbances in a in�nite domain and results as superposition of a forward and a backward
travelling waves (Section 3). On the other hand, from a computational point of view, it is
necessary to truncate the arterial tree at some level and provide out�ow boundary conditions
at the truncation points. This can introduce spurious re�ections due to a possible impedance
mismatch [1]. The problem of assigning the proper boundary conditions to an extracted vessel
segment is overcome by coupling it with a Windkessel type model. Despite its simplicity, this
is a lumped model predicting the impedance of the termination, as a result of a resistive and
a compliant behaviour of the downstream arteries (Section 4). Some numerical results are
presented in Section 5 for the unsteady �ow sustained by two basic time-dependent forcing,
as a benchmark case. The �ow dependence on the elasticity and the viscosity parameters
is shown. The e�ect of the elasticity parameter is found to be related to the amplitude of
oscillations, while the in�uence of viscosity parameter is to attenuate the high frequency
pulsations in the transient, to reduce the tendency of shock formation as in a purely elastic
wall model, and to counterbalance possible instability phenomena. Finally, the case of a
varying elastic coe�cient (i.e. due to a stent insertion) on the �ow dynamics is examined in
Section 6.

2. MATHEMATICAL FORMULATION

2.1. The �ow equations

Owing to the small deformations of the vascular wall and to the unidirectional nature of blood
�ow in the arterial tree, a quasi-1D model is adopted. Let us consider a homogeneous �uid
of density � �owing in an axisymmetric distensible tube of circular cross-section and let us
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introduce a set of non-dimensional variables:

x → x
R0

; R → R
R0

; t → tU0
R0

u → u
U0

; p → p
�U 2

0

where x is the axial co-ordinate, R is the radius (with R0 a reference radius), u is the axial
velocity, p the transmural pressure, both averaged over the cross-section (with U0 a charac-
teristic velocity), and t denotes the time.
Let us consider the 1D cross-averaged momentum equation:

@u
@t
+ u

@u
@x
=−@p

@x
+ f (1)

where f is a viscous term [4]. This is approximated by the friction term of the Poiseuille
steady �ow in a tube of radius R given by

f�− 8u
Re R2

(2)

with Re=�U0R0=� the Reynolds number and � the �uid viscosity. As a consequence, the
wall shear stress is given by

�=
du
dr

∣∣∣∣
R
�− 4u

Re R
(3)

Strictly speaking, expressions (2) and (3) hold for a steady �ow in a rigid tube, but they are
considered acceptable for quasi-steady �ows and for small deformations (R≈R0) [3].
The principle of conservation of mass in a deformable tube is expressed by the following

the continuity equation [3]:

@R
@t
+

R
2

@u
@x
+ u

@R
@x
=0 (4)

2.2. The wall equations

The adequate mechanical characterization of blood vessels is an important prerequisite for a
quantitative description of blood �ow, mostly in wave propagation phenomena. The properties
of vascular tissues are highly non-linear, and many models have been developed for modelling
the arterial wall dynamics in physiological and pathological conditions [6]. On the other hand,
in a normally stressed vessel the radial deformation around the equilibrium con�guration is
quite small (typically it does not exceed 10%) and a linear strain–stress law around it is likely
to be used. The longitudinal deformation, even smaller and negligible at �rst approximation,
is revealed to be of some importance in the analysis of the wall shear stress and has interest
in the investigation of pathological conditions.
Many authors have pointed out the importance of viscoelasticity in modelling arterial walls.

Patel and Vaishnav veri�ed the existence of the arterial viscoelasticity through a dynamical
experiment [7]. Reuderink et al. found that neglecting viscoelasticity generates an underesti-
mation of both phase velocity and damping [3]. Generally, a viscoelastic wall model yields
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numerical results closer to measurements than an elastic one, and a dissipative wall is more
e�ective than a viscous �uid in eliminating the high frequency oscillations. The damping re-
sulting from viscoelasticity inhibits sharp peaks of the pressure and of �ow pulses and leads
to more realistic results when a comparison with experimental data is carried out [5].
For a simpler analysis, we adopted a linear viscoelastic 2D model, given by the following

strain–stress relationship:

T1(�1; �2; �̇1; �̇2) = K
(
�1 +

�2
2

− 3
2

)
+ �

(
�̇1 +

�̇2
2

)

T2(�1; �2; �̇1; �̇2) = K
(
�2 +

�1
2

− 3
2

)
+ �

(
�̇2 +

�̇1
2

) (5)

where T1 and T2 are the non-dimensional stresses in the axial and circumferential direction,
�1; �2 are the principal deformation ratios (see below), K¿0 is an elasticity coe�cient,‡ �¿0
is a non-dimensional wall viscosity coe�cient and the dot denotes time derivative [5, 8]. The
former relations hold in the case of an incompressible and isotropic material, wherein principal
directions of strain and stress coincide and express the property that the instantaneous Young’s
modulus increases with the strain, though by a di�erent amount in the two directions [6].
The simple functional dependence strain–stress in Equations (5) takes into account the

viscous e�ects of a material in time-dependent motions and models the response of the arterial
wall to the deformation and to the rate of deformation. The linear form (5) allows a simpler
analysis and helps to separate out the contribution of the elastic and viscous parts.
Let us now consider the vessel wall modelled as an elastic axisymmetric membrane. This

is a 2D thin shell with a mass negligible compared with that of the �uid contained in it.
The membrane, which has no bending sti�ness, is capable to deform under the forces ex-
erted by the �uid (i.e. the shear stress � and the transmural pressure p-cf. (3)) and reaches
an equilibrium state. Let (xP(s); rP(s)) be the Lagrangian co-ordinates of a particle P with
s a parametric co-ordinate along the membrane in its symmetry plane. In such reference
frame, the principal deformation ratios in the meridional and circumferential directions are,
respectively,

�1 =

√(
drP
ds

)2
+
(
dxP
ds

)2
; �2 =

rP
R∗ (6)

where R∗ is the undeformed radius (corresponding to the zero transmural pressure).
Since the �uid equations are expressed in Eulerian co-ordinates, let us operate a transfor-

mation of co-ordinate and let us indicate by R(x; t) and S(x; t) the Eulerian counterparts of
the Lagrangian co-ordinates of a particle of the membrane. In other words, the position of
the point P on the wall that deforms radially and axially is described by the two variables
R(x; t) and S(x; t) (see Reference [8]). In such co-ordinate system, the stretch ratios (6) are

‡ K corresponds to the non-dimensional combination Eh=�R0U 2
0 , with E being the Young modulus and h the

undeformed arterial thickness.
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written as

�1 =

√
1 + R′2

S ′2 ; �2 =
R
R∗ (7)

(the prime denotes x-derivative). By balance of forces, the �uid–membrane equilibrium equa-
tions in tangential and normal directions are provided [9]:

R′(T1 − T2) + RT ′
1 = �R(1 + R′2)1=2 (8a)

−R′′

(1 + R′2)3=2
T1 +

1
R(1 + R′2)1=2

T2 = p (8b)

3. ANALYSIS OF THE LINEARIZED SYSTEM

Because of the complexity of the mathematical model, we proceed to a preliminary analysis
by using a perturbation expansion in an in�nite domain. This idealized case will be useful
to better understand the nature of the di�erential problem. When a tube �lled with a liquid
at rest or �owing with constant velocity is disturbed at one place, the disturbance will be
propagated as a wave along the tube at �nite speed. For simplicity, let us take a constant
equilibrium unstressed state (R∗; S∗; p∗ ≡ 0; u∗) as reference con�guration§ and let us perturb
the system with in�nitesimal quantities (R̃; S̃ ; p̃; ũ):

R=R∗ + R̃; S= S∗ + S̃ ; p=0+ p̃; u= u∗ + ũ (9)

In the hypothesis of waves of small amplitude and long wavelength, let us also assume that
R̃′; R̃′′; S̃ ′; ũx; p̃x and their time derivatives are in�nitesimal of the same order.
By neglecting second-order in�nitesimals, we have the following approximations (see (7)):√

1 + R̃′2 ≈ 1 +
R̃′2

2
≈ 1

�1 =

√
1 + R̃′2

(1 + S̃ ′)2
≈ 1
1 + S̃ ′ ≈ 1− S̃ ′; �2 =

R∗ + R̃
R∗ =1+

R̃
R∗

(10)

By replacing (9) in Equations (8a), (8b), (1), (4) we obtain

KR̃′
(
�1 − �2
2

)
+ �R̃′

(
�̇1 − �̇2
2

)
+ KR

(
�′1 +

�′2
2

)
+ �R

(
�̇′1 +

�̇′2
2

)
= �̃R

−KR̃′′
(
�1 +

�2
2

− 3
2

)
− �R̃′′

(
�̇1 +

�̇2
2

)
+

K
R

(
�2 +

�1
2

− 3
2

)
+

�
R

(
�̇2 +

�̇1
2

)
= p̃

§ For a inviscid �uid, any u∗ satisfy the �ow equation and its value is irrelevant for the following analysis. For a
viscous �uid, u∗=0.
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ũt + (u∗ + ũ)ũx=−p̃x + f(ũ)

R̃t +
R∗ + R̃
2

ũx + (u∗ + ũ)R̃x=0

The �rst two terms in the �rst two equations are in�nitesimal of second-order and will be
omitted. Thus, after integration (along x) of the �rst equation, the four equations reduce to

K
(
�1 +

�2
2

− 3
2

)
+ �

(
�̇1 +

�̇2
2

)
=
∫

�̃ dx≡ g(ũ) (11)

K
(
�2 +

�1
2

− 3
2

)
+ �

(
�̇2 +

�̇1
2

)
= p̃R∗ (12)

ũt + u∗ũx = −p̃x + f(ũ) (13)

R̃t +
R∗

2
ũx + u∗R̃x = 0 (14)

The integration of the latter equations is accomplished in two steps: by �rst solving
the wall con�guration equations (11)–(12) and then by updating the �ow �eld equations
(13)–(14).

3.1. Wall equilibrium con�guration

Let us suppose the �ow variables are known at a certain time. After substitution of (10), the
previous two �rst equations become

K

(
R̃
2R∗ − S̃ ′

)
+ �

( ˙̃R
2R∗ − ˙̃S ′

)
= g(ũ) (15)

K

(
R̃
R∗ − S̃ ′

2

)
+ �

( ˙̃R
R∗ −

˙̃S ′

2

)
= p̃R∗ (16)

Case �=0 (Purely elastic wall): The two O.D.E’s (15)–(16) become algebraic equations:

K

(
R̃
2R∗ − S̃ ′

)
= g(ũ) (17)

K

(
R̃
R∗ − S̃ ′

2

)
= p̃R∗ (18)
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and solving with respect to R̃ and S̃ ′ we get

R̃=
2R∗(2p̃R∗ − g(ũ))

3K
(19a)

S̃ ′ =
2(p̃R∗ − 2g(ũ))

3K
(19b)

The value of the perturbed deformations are inversely proportional to K and do not depend
on p̃ and g(ũ) only, but also on the unstressed value R∗. For an inviscid �uid, we have
g(ũ)=0 and R̃=R∗=2S̃ ′=4p̃R∗=3K .

Case �¿0 (Viscoelastic wall): From (15)–(16) we have

˙̃R=−K
�
R̃+

2R∗(2p̃R∗ − g(ũ))
3�

; ˙̃S ′=−K
�
S̃ ′ +

2(p̃R∗ − 2g(ũ))
3�

(20)

The general integral of this system is a solution of exponential type e−�t with damping factor
�=K=�¿0. When K � �, the damping factor is large and the solution is rapidly decaying
to the asymptotic values given by (19). If � is comparable with K the transient time can be
relevant.

3.2. Flow �eld

Once the wall con�guration is computed at a given time, the �uid dynamics variables are
updated as follows. For the sake of simplicity, we concern ourselves with the purely elastic
case and let us assume that the viscous resistance is negligible (f(ũ)= g(ũ)=0). By replacing
expression (19a) into (13)–(14) we get the �rst-order linear system:

ũt + u∗ũx + p̃x =0

p̃t +
3K
8R∗ ũx + u∗p̃x =0

that is

wt +Awx= 0 (21)

where

w=

(
ũ

p̃

)
; A=


 u∗ 1
3K
8R∗ u∗




The eigenvalues of A:

!1;2 = u∗ ± 1
2

√
3K
2R∗

are real and distinct (system of hyperbolic type) and the characteristics are the straight lines:
dx1
dt
=!1 = u∗ + c;

dx2
dt
=!2 = u∗ − c (22)
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with

c=
1
2

√
3K
2R∗¿0 (23)

Since in physiological regimes u∗�c (subcritical �ow), the characteristics have opposite
signs. System (21) can be put in normal form as follows. By de�ning

T=

(
c 1
−c 1

)
; �=diag(�1; �2)=

(
u∗ + c 0
0 u∗ − c

)

we have

TA=�T

Let be W=Tw. We have

Wt +�Wx= 0 (24)

or, in scalar form

(p̃+ cũ)t + (u∗ + c)(p̃+ cũ)x =0

(p̃− cũ)t + (u∗ − c)(p̃− cũ)x =0

W1 = p̃+ cũ and W2 = p̃− cũ are the two Riemann invariants of the hyperbolic system (24):
they do not vary along the characteristic lines (22) and concur to the formation of the pressure
and �ow pulses. The resulting solution is given by linear superposition of a progressive and
of a regressive wave, with �nite speeds u∗ + c¿0 and u∗ − c¡0, respectively [10].
The general solution of system (24) in terms of p̃ and ũ is given by

p̃=
W1 +W2

2
=

�(x − (u∗ + c)t) +  (x − (u∗ − c)t)
2

ũ=
W1 −W2

2c
=

�(x − (u∗ + c)t)−  (x − (u∗ − c)t)
2c

where � and  are two arbitrary di�erentiable functions depending on the initial data.
Note that the linear elastic theory (in absence of longitudinal stress and strain) predicts a

di�erent non-dimensional speed given by the cMK = (1=U0)
√

Eh=2�R0R∗=
√

K=2R∗ (Moens–
Korteweg formula).
A general analysis with similar arguments would be carried out when the perturbation is

around a reference (i.e. pre-stressed) state di�erent from the unstressed con�guration.

4. BOUNDARY CONDITIONS

Equations (1), (4) and (8), together with the constitutive equations (5), model the non-linear
�uid–wall interaction and are solved in the segment between the two points x=0 (proxi-
mal end) and x=L (distal end) which constitute the �ctitious boundaries of the di�erential
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Figure 1. The Westkessel model described by Equations (26) and (27).

problem. According to the considerations of Section 3, we would need to prescribe the char-
acteristic variable W1 on the proximal end and W2 on the distal end as boundary conditions.
Under some restrictions, alternative boundary conditions can also be expressed in terms of
the primitive variables u and p, or with a functional relation between them [11].
As a matter of fact, the analysis carried out on a linearized system was derived in the

hypothesis of in�nitesimal perturbations around an unperturbed con�guration. In the non-linear
case and under a �nite load �p, the arterial �uid–wall dynamics is more complex and another
approach for the boundary prescription will be proposed here. The possibility to incorporate
a 1D model in a full lumped parameter model based on the electrical circuit analogue is
presented by Formaggia et al. [12] and gives account for a global balance of �ow and
pressures in the cardiovascular network (multiscale approach). In such a case the matching
interface condition between systems of di�erent physical dimension is carefully addressed.
However, to investigate the response of an arterial segment to a given pressure pulse, a
relatively simpler method is likely to be used. An arbitrary pulsatile boundary condition on
the pressure

p(0; t)=f(t) (25)

is given at the inlet for a speci�c form of f, see Section 5. An out�ow condition of type
(25) is not realistic, since the peripherical termination in�uences the response of the vessel
and a feedback e�ect has to be considered. Following the idea of other authors, a Windkessel
type model is coupled as a distal load, in order to account for the remaining terminal vas-
cular system beyond the end of the vessel [2, 13, 14]. Based again on the electrical analogue
circuit, the three-elements Windkessel (also called the Westkessel model) (WK) consists in
a resistance in series with a parallel combination of a resistance and a capacitor [14] (see
Figure 1). This is described by the following two equations:

p− p∗ = rQ (26)

Q = C
dp∗

dt
+

p∗

r1
(27)
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where r + r1 is the total peripherical resistance, C the total compliance, r the characteristic
impedance, p∗ is the pressure downstream of the vessel and Q=�R2u is the �ow rate. By
eliminating p∗ from Equations (26)–(27) we get

FWK(p; ṗ; Q; Q̇)=
p
r1
+ C

dp
dt

− Cr
dQ
dt

− r + r1
r1

Q=0 (28)

that give a di�erential relation between p and Q (or u) to be imposed at the outlet. The
boundary condition (28) is based on a lumped relation between �ow and pressure in the
smaller arteries and arterioles and can be read, to some extent, as a di�erential condition of a
Riemann invariant W2 (see Section 3). It does not include spatial distribution of the network
of smaller arteries and is not able to capture the wave propagation phenomena. Nevertheless,
provided a correct estimation of the three parameters C; r; r1 is given, it models the physical
phase lag between �ow and pressure and avoids spurious re�ections present in other models
[15].
Finally, the boundary conditions for R are given by considering a in�nitely long vessel¶

with free ends. Therefore, the conditions

R′=R′′=0; S ′=1 (29)

hold at the ends.‖ From (8b) it follows that the implicit relation for R:

Rp=T2

(law of Laplace) uni�es the three conditions (29) and is prescribed at the boundaries.
Moreover, the boundary conditions on S:

S(0; t)=0; S(L; t)=L∗

expressing a �nite axial displacement L∗ is imposed.
The initial condition is chosen by considering the equilibrium con�guration obtained with

a constant input pressure. Then the system is left evolving forced by pressure (25).

5. NUMERICAL APPROXIMATION AND COMPUTATIONAL RESULTS

Equations (1)–(4)–(8)–(5) are solved numerically in a fully coupled way in a �nite interval
[0; L]. Let us consider a sequence of n + 1 equispaced grid points of co-ordinates (xi)i=0;:::;n
with x0 = 0 and xn=L. The spatial discretization is obtained by evaluating membrane stresses,
strains and their time derivatives (see Equation (5)) at n inner points 	i=(xi + xi+1)=2 of
a staggered grid by considering averaged neighbouring variables. On the other hand, wall–
�uid equilibrium equations (8) and �uid equations (1)–(4) are computed at the n − 1 inner
points xi. The �rst derivatives are approximated by a centred �nite-di�erence scheme and
the resulting non-linear system includes (28) as �nal equation and is solved by a globally
convergent Newton type method. The time discretization is based on the second-order Runge–
Kutta formula, in such a way the global scheme is of second-order in space and time [16].

¶ Here in�nitely long means of length much larger than the reference radius R0.
‖ Conditions (29) imply �1 = 1 (null axial stretch ratio), see (7).
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Figure 2. Pressure histories at three locations (left, centre and right) in the vessel. The �rst row refers
to a sharp pulse (K =600—thin line is for �=10, thick line for �=100), the second row to a long

pulse (no variation with � occurs). Note the di�erent time scale.

The following values for the WK model are considered [2, 17]:

r=1mmHg s=ml r1 = 3:06 mmHg s=ml C=1:06 ml=mmHg (30)

non-dimensionalized as

r → rR20
�U0

; r1 → r1R20
�U0

; C → C�U 2
0

R30

The other parameters have been chosen around some typical values to obtain results of
physiological interest and varied in a typical range to test the sensitivity of the system to their
perturbation. Non-linear models turn out to be very sensitive to the many material parameters
which characterize the speci�c �ow problem.
In all the numerical experiments we selected R∗=1, L=L∗=8, �x=10−2 and �t=5

× 10−4. These values guarantee the numerical stability for the set of parameters considered.
The accuracy of the solution is controlled since the solution corresponding to a �ner grid
does not reveal a di�erent structure or unresolved patterns (grid independence). Since in
wave propagation phenomena the dissipative e�ect of the blood viscosity is a minor e�ect
[4], in the following simulations an inviscid �uid is considered (f≡ 0 in (1) and �=0
in (8a)).
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Figure 3. Radial deformation histories at three locations (left, centre and right) in the arterial vessel.
The �rst row refers to a sharp pulse (K =600—thin line is for �=10, thick line for �=100), the

second row to a long pulse (no variation with � occurs). Note the di�erent time scale.

In this fundamental study, the response of the vessel to a pressure input is investigated.
This signal can be decomposed by Fourier analysis and represented as a pulse (a dominant
harmonic) and a superposition of the other components repeated with some periodicity: hence,
the contributions of a single pulse and of a train of waves will be examined separately.

5.1. Single pressure pulse

Let us �rst impose a localized pressure pulse centred in t∗, of half-width 
, and amplitude A:

p(0; t)= �p+ A exp

[
−50

(
t − t∗

2


)2]
(31)

Out of the time interval [t∗ − 
; t∗ + 
] where the peak is located, the pressure equals the
mean pressure �p. The following values have been �xed as:∗∗

�p=40; A=10 (32)

and K =600 has been taken as elastic parameter. Actually, the values of K and �p are not
independent, being the mean deformation in relation with the ratio �p=K : it turns out that for

∗∗ The values of the non-dimensional parameters are de�ned by letting: R0 = 0:5 cm, U0 = 50 cm=s, T0 = 1 s and
with a mean pressure of 75 mmHg.
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Figure 4. Pressure versus �ow velocity in the centre point over more than one cycle.
The eccentricity of the hysteresis curve depends on the WK model parameters. The

WK values used in the simulation are reported in (30).

�p=K¡� 0:01 the wall increases its sti�ness and the numerical problem becomes harder. On
the other hand, for a value of �p=K too large, the system undergoes an unrealistic deformation
and the present model is not physically admissible.
A sequence of simulations showed that the propagation phenomenon is critically depen-

dent on the sharpness of the pulse, that is the value of 
. For 
 small (i.e. 61), corre-
sponding to a sharp peak, the response of the vessel to the impulsed pressure occurs in a
short time compared with the characteristic transit time. The pulse is followed by an os-
cillatory tail after the peak, reduced with the dissipative coe�cient � (see Figures 2 and
3). This spreading of the pulse is due to the natural oscillations of the membrane which
have a comparable frequency and, at low wall viscosity, are excited. More signi�cantly, the
character of the propagation is greatly in�uenced by the values of the termination. In par-
ticular, the resistances r and r1 have a strong e�ect on the onset of the re�ections, while
the in�uence of C is much lower. A rigorous procedure requires the tuning of the parame-
ters of the WK model to match impedance with the distributed model. The characterization
of the termination model is beyond the scope of this work and can be found elsewhere
[13].
A more remarkable case concerns a pulse having a duration comparable with the systolic

phase (≈ 0:4s). Numerical results for 
≈ 20 show the impulse propagating undisturbed down-
stream, with no appreciable damping or dispersion (Figures 2 and 3). The character is of a
travelling wave, with pressure and �ow out of phase.
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Figure 5. Radial (above) and longitudinal (below) deformations at the centre of the
tube for three values of the elasticity coe�cient K , in the case of periodic �ow.

Continuous line is for �=10, dashed line for �=1000.

The wave speed has been determined as in experiments: the transit time of the peak of the
pressure pulse has been measured over a known distance. The main di�culty is that the wave
changes in shape as it travels, and it is di�cult to keep a single reference value for the full
wave. Moreover, in a vessel of �nite length, the wave speed may depend on the point where
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Figure 6. Plot of R versus S of a particle around the centre of oscillation Rmed in a
time cycle. Note the di�erent scale of the deformation.

it is measured and the change in shape is associated with re�ections from the boundaries. The
apparent measured wave speed may not correspond to the wave speed of a wave travelling
in an in�nite tube with the same viscoelastic properties (see Section 3 (23)). See Section 6
for comparative results.

5.2. Train of sine waves

As a periodic forcing, an oscillatory pressure with a more realistic frequency is assigned at
the inlet:

p(0; t)= �p+ A sin(2�Stt) (33)

and St =R0=U0T0 is the Strouhal number with T0 the period of the incoming wave. The values
of �p and A are as in (32), and St =0:01 in agreement with the physiological values. To avoid
the e�ect of the initial conditions, in the numerical simulations the transient has been dropped
and only the solution after the second period is considered.
The persistence of sinusoidal oscillations over the mean values occurs with the same input

frequency St and with amplitudes depending on the elasticity parameter (see below), while
the length of the wave does not change with K and �. A small phase shift between p and u
is evidenced from the hysteresis loop depicted in Figure 4. The eccentricity is much smaller
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Figure 7. The maximum radial deformation at the centre of the tube at di�erent elasticity coe�cients K .
Starred points are results from simulations, continuous curves are obtained by a linear interpolation.

Figure 8. Implantation of a stent in a stenotic artery.
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Figure 9. Behaviour of the ratio between the stented and the unstented maximum
deformation at the centre of the stented artery with Ks=K0 (K0 = 600; �=2). The

ratio tends asymptotically to the value for the rigid tube.

than 1 and depends again on the values of the WK model, but not on the viscoelasticity
parameters K and �. This hysteresis curves neither depend on the point along the tube and
this proves that no re�ection is present at such frequency.
The viscosity of the wall, parametrized by �, is expected to give an attenuation of the

wave pro�les, but its e�ect depends on the magnitude of the strain rates: the viscous damp-
ing a�ects only waves of relatively short length such as those of the wall natural oscillation
[5, 15] or sharp pulses, but is irrelevant for the long wavelength typical of the vascular sys-
tem. A large value of � (≈ 103) would slightly shift the pro�les, but not the wave amplitude
(Figure 5). Since � multiplies strain rates that are extremely small, the damping in�uence is
felt only for ��0 (i.e. 106) and, in such a case, a reduction in the amplitude of deforma-
tion R is also reported. In the simulations, we �x �=10 and we let vary 3506K66000.
The longitudinal deformation S exhibits very small changes compared with the radial one. A
much sensible e�ect of the axial extension and compression would be evident by consider-
ing the viscous �uid and its shear stress at the wall. A phase shift of almost �=2 is clearly
visible. The curves S=R in a period of time around the centre of oscillation are depicted in
Figure 6. Finally, the dependence of the amplitude of the radial deformation on K is found to
be inversely linear (Figure 7). The propagation features correspond to waves travelling along
the tube, and the same considerations for the wave speed as in the single pressure pulse case
hold.
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Figure 10. Space–time evolution of the membrane radial velocity in a stented artery for three values of
Ks (K0 = 600; �=2). Thick lines indicates the zero level, continuous lines positive levels, dashed lines

negative levels. x-axis is vertical and time axis is horizontal.

6. A CLINICAL APPLICATION: THE STENT INSERTION

In many vascular pathologies, when the arterial lumen is extremely reduced, the stenting
methodology is successfully employed since many decades. It is based on the implant of a
tubular endoprosthesis (stent) to support the arterial wall (Figure 8). Despite its complex
geometrical structure and a variety of mechanical characteristics, a stent can be schematically
represented with a sti� cylindrical wiremesh placed in the vessel to prevent or to correct
narrowing of the section (i.e. stenosis) [18]. Although the stent implantation changes the
geometry of the vessel and consequently induces important disturbances in the local �ow, a
relevant e�ect in the wall–�uid interaction are the change of the compliance due to the sudden
rising of the elasticity coe�cient, and the features of the propagation [19].
In an artery of elasticity coe�cient K0, let us consider a stent of length 2� centred in

a point x∗ and with elastic parameter Ks¿K0. Therefore, the elasticity parameter along the
stented artery is subject to an abrupt change given by

K(x)=

{
Ks if |x − x∗|¡�

K0 otherwise
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Figure 11. Pressure histories at three locations (left, centre and right) in the stented
arterial vessel (K0 = 600; Ks=6000; �=2). The �rst row refers to a sharp pulse (thin
line is for �=10, thick line for �=100), the second row to a long pulse (no variation

with � occurs). Note the di�erent time scale and compare with Figure 2.

but, to avoid a compliance mismatch between the relatively rigid stented segment and the
distensible vessel, the elastic parameter is modelled by a continuous rapidly changing function:

K(x)=K0(1 + �e−((x−x∗)=�)8); �=
Ks − K0

K0
(34)

(for Ks=K0 a uniform elasticity coe�cient is recovered). The e�ect of a physiological local
hardening or softening of an artery and the mechanical properties of stents can be also roughly
modelled by varying the value of � and �.
In the numerical simulations, we �xed R∗=1, L=L∗=8, x∗=4 �=2 (stent two diameters

long), K0 = 600 and we varied Ks in (34) up to 12 000, with the wall viscosity coe�cient
�=10 unchanged.
As expected, the maximum values of the deformation and of the pressure at the centre

of the tube are reduced with Ks=K0, and the asymptotic value of rigid wall is attained (see
Figure 9). On the other hand, when subject to the periodical forcing (33), the variation of
the elasticity coe�cient does not modify the frequency of the oscillation. The space–time
evolution of the membrane radial velocity in an unstented and a stented artery are compared
in Figure 10. The pressure and radial deformation time histories in three points—upstream
the stent, centred in x∗, and downstream the stent—and subject to the impulsed pressure (31)
are depicted in Figures 11–12. The re�ections due to jump of K at the stent junctions are
present when 
 is small and are reduced or disappear with the wall viscosity.
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Figure 12. Radial deformation histories at three locations (left, centre and right) in the
stented arterial vessel (K0 = 600; Ks=6000; �=2). The �rst row refers to a sharp pulse
(thin line is for �=10, thick line for �=100), the second row to a long pulse (no variation

with � occurs). Note the di�erent time scale and compare with Figure 3.

7. CONCLUSIONS AND PERSPECTIVES

The dynamics of the pulsatile �ow in an arterial segment has been studied in relation to
the viscoelastic properties of the vessel wall. The �uid–wall interaction is described by a 1D
model and is expressed by a set of four non-linear partial di�erential equations plus an ODE
describing the peripherical circulation as a lumped parameter model. Although the latter is
unable to describe wave propagation phenomena, it is able to absorb the waves travelling in
the tube and prevents the non-physical re�ections that arise when a Dirichlet type boundary
condition is imposed. However, it needs the estimation of three parameters to avoid impedance
mismatch.
The hyperbolic nature of propagation phenomenon has been analysed in the linearized case.

The dependence on the many parameters has been pointed out in the case of oscillatory �ow
and the in�uence of some of them in a case of clinical relevance has been examined. The
model can be generalized to account for vessel tapering and bending. Finally, the geometrical,
physical and biomechanical parameters need to be carefully identi�ed according to a speci�c
�ow problem.
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